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Abstract The soliton scanering by one single and two point impurities in a finite domain 
of an infinite rP4 chain is nnlytically discussed. It is shown, for the single-point-impurity 
configuration, that the impurity causes the soliton to oscillate about the host site, whereas for 
the two-point-impuriues configuration the soliton oscillates from one impurity wall to the other of 
the finite domain delimuted by the huo host sites. The oscillation frequency in each configuration 
has been estimated. We hove also shown that in the second configuration the soliton falls into 
the finite domain with an exponentially increasinz velocity and escapes at the tmsmitting wall 
with a velocity that decreases exponentially as the domain thickness inc-. 

1. Introduction 

Recently, understanding of the combined effects of disorder and non-linearity and the 
important role that they play in condensed-matter systems has been a subject of particular 
interest. In this framework, the starting point has been the determination of whether or not 
non-linearity modifies qualitatively the effects of disorder on transport properties, and vice 
versa, i.e. of whether or not disorder affects the remarkable solitonic properties of non-linear 
systems. To provide insights into the subject, several analytical as well as numerical studies 
have been carried out (Li er a1 1988, Mistriotic er al 1988, Bishop er al 1989, Fraggis 
et al 1989, Kivshar and Malomed 1989, Braun and Kivshar 1990, 1991, Kivshar er al 
1992, Woafo and Kofand 1993a, b). Most of these studies model the non-linear disordered 
system by an infinite chain of particles interconnected by linear springs and subjected to a 
non-linear substrate potential, with a few (one or two) point impurities at some sites of the 
lattice, owing either to mass defects or excess at these sites (Abdullaev ef al 1990, Kivshar 
and Malomed 1989, Kivshar er al 1992, Woafo and KofanC 1993b). Indeed, the model of 
a Klein-Gordon lattice with inhomogeneities provides a better method of investigating the 
scattering properties of solitons in disordered systems. More explicitly, this model allows 
for the use of standard methods, among which are the Hamiltonian perturbation theories 
(Fogel ef al 1977, McLaughlin and Scott 1978, Kaup and El-Sayed 1986) which have 
already been exploited at length in similar contexts (Pascual and Vazquez 1985. Kivshar 
and Malomed 1989, Rodriguez-Plazza and Vazquez 1990) and have led to quite interesting 
results on the subject. Thus, it has been proved that the main effect of the impurities was 
the modulation of the soliton’s dynamical parameters, so that the soliton may be captured, 
reflected or transmitted by the impurities with possibly more or less distortion of its structure 
and the excitation of new degrees of freedom, among which is the impurity mode (Fraggis 
ef al 1989, Kivshar et a1 1992). 

0953-8984/94~16229+08$19.50 0 1994 1OP Publishing Ltd 6229 



6230 A M Dikandi et a1 

If we restrict ourselves to the consideration of only topological solitons, these solitons 
are precisely self-localized waves which describe large-amplitude non-linear excitations in 
many physical systems. From the physical point of view, the ‘large-amplitude’ feature of 
these self-localized excitations just traduces the fact that they are insensitive to end effects 
as they propagate along the infinite Klein-Gordon chain. Really, such consideration seems 
purely theoretical since it  is unlikely that any condensed-matter system has infinite length. 
Indeed, molecular, biomolecular and in general hydrogen-bonded compounds, to name only 
a few cases, provide typical examples of physical systems in which the chain backbone 
consists of a precise number of molecular or ionic units and therefore has finite length, 

In this paper, we analyse the influence of one single point impurity and two point 
impurities on the motion of a solitary wave in a finite @4 system. For this purposc, we 
consider a finite domain on an infinite @4 lattice, delimited by two walls at a finite distance 
from each other. First, we discuss the configuration in which a given site inside the finite 
domain lodges a mass defect or excess, and next we treat the case where each wall of the 
domain frontiers is the host of a local impurity. As an instructive remark, the finiteness 
of our scattering domain renders inadequate the existence and the stability of the usually 
assumed @4 kink, but rather of an appropriate type of soliton excitation which will be 
derived in terms of a snoidal @4 kink. However, the role of a large-amplitude d4 kink 
will be of particular importance when analysing the continuity of the soliton at the domain 
boundaries. 

The paper is outlined as follows. In section 2, we seek the appropriate soliton solutions 
for the system dynamics on the one hand and for the finite domain and in the domain 
as well, in the absence of impurities, on the other hand. In section 3, with the help of 
the perturbation methods we estimate the main dynamical parameters of the soliton in the 
presence of a single point impurity, and in section 4 the case of two point impurities is 
considered. Section 5 is devoted to a conclusion. 

2. Model and explicit soliton solutions 

Consider a @4 chain, in which @ is the displacement field. In the presence of 
inhomogeneities, the system dynamics are governed by the perturbed equation 

$,, - $xz + (l / iz)(8/8$)u(+) = ~ ( 4 ,  @,, x ,  t )  (1) 

where the subscripts I and x refer to time and space derivatives, respectively, and U ( @ )  is 
the 5b4 substrate potential given by 

U ( @ )  = a(&-  112, (2) 

In (I), 111 defines the scale of non-linearity, and the function P is the inhomogeneous term, 
for which two particular forms will be considered: 

Equation (1) with P given by (3a) describes a @4 system with one single point impurity 
(Kivshar and Malomed 1989). whereas equation (1) with P given by (3b) corresponds to 
a C4 system with two point impurities at the distance 2d from each other (Kivshar et a1 
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1992, Woafo and KofanC 1993a). E in (3) is a weak parameter which plays the role of the 
impurity rate at the host site@). When E > 0, we are faced with heavy mass impurities, 
whereas E < 0 will refer to light mass impurities (Woafo and Kofanb 1993b). When E = 0, 
(1) is non-integrable. Nevertheless, it leads to the following set of solitary wave (kink) 
solutions, in the non-relativistic limit: 

tanh([x - X I  - X ( t ) ] / h l ]  I tanh([x - x2 - X ( f ) ] / f i I ]  

x < -d 
+ ( x ,  I )  = [2m/(l + m)l%n[([x - X ( i ) l / l G ] / m J  -d < x < d . (4) 

x > d  

X(t) is the kink centre of mass, which in the present case reads X(r) = ut (U is the kink 
translation velocity). sn appearing in the second solution of the set (4) is a Jacobi elliptic 
function of modulus m (appendix 1). In this context, this solution will be called a snoidal 
+4 kink, of characteristic length 1.  The first and the third solutions in the same set (4) are 
the well known large-amplitude kink solutions of the unperturbed equation. I t  is easily 
verified that, in the limit m + 1, the snoidal kink turns into a largeamplitude kink, with 
the same characteristic length I. 

The quantities XI and xz measure the characteristic positions of kinks in the two semi- 
infinite media with respect to position of the finite domain on the chain. They result from 
the continuity of solutions at the frontiers -d and d ,  which yields 

X I  = -xz.  ( 5 4  

In turn. setting X I  = X O ,  we derive 

which displays a strong dependence upon the two relevant physical parameters d and m. 

3. Scattering of the kinks by a single point impurity 

Let E # 0, and P be given as in ( 3 4 .  On the assumption that the point impurity is at a 
site inside the scattering domain or, in other words, in the interval -d < x < d ,  then the 
relevant dynamic equation is that governing the time evolution of the kink centre of mass, 
i.e. 

r 

Xlr = --E W)+dX dx. (6) 

Inserting the second explicit solution of (4) in (6) and using the series expansions of Jacobi 
elliptic functions (appendix 2), we arrive at the following second-order differential equation: 

I 

x,, = -AO s i n [ r r / ~ ~ ~ / T i G ] ~  (74 

A0 = [ ~ m ~ r r ’ / K ~ l ~ ( l  + m)5/2] cosech2(xK’/K). (7b) 

Equation (7) may be interpreted as the equation of an effective particle with mass unity, 
moving into the field of the zffective potential: 

U(X) = u o c o s [ r r / 2 K l z x .  ( 8 4  
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This effective potential is a periodic function of the kink centre of mass coordinate X, and 
its barrier height Cl0 is obtained as 

U0 = ZKlJr?;;;Ao/x. (&b) 

A M Dikandi el a1 

In equations (7) and (8). K and K' are complete elliptic integrals of the lirst kinds. 
Actually, the periodic feature of the trapping potential U ( X )  has the following meaning: 

near the impurity, the snoidal kink oscillates, being pinned to a potential barrier whose height 
varies as a function of its characteristic width 1, the impurity rate E and the parameter m 
which, precisely, is characteristic of the finiteness of the scattering domain. In the limit of 
small-amplitude motions, the pinning frequency will obey the relation 

= A~x/zK~G. (9) 

In figure I ,  we draw Qz as a function of m. One sees that i t  increases as m is increased. 
Traducing this variation, Q2 becomes larger as the snoidal kink behaves more like a large- 
amplitude excitation. Therefore, the frequency itself will increase with increasing m, such 
that the maximum frequency is reached when m = 1. 

- 
m 

Fwre 1. Varialion in the s q u m  of the kink oscillation 
frequency as a function of Ihe pwmeler m. In the 
configuntion of a single point impurity. 

i 

4. Kink scattering by two point impurities 

Next, consider (1) and (36). In that case the evolution equation derived from equation (6) 
will be of the form 

X,I = -Ao[sin(n/ZKl=)(d - X )  - sin(n/ZKI=)(d + X)].(lO) 

Equation (10) is subjected to two continuity relations at the frontiers. These relations are 
in fact the kink evolution equations at the domain boundaries: 

X,, = (3&/4l2)sech4[(d + X + x l ) /& ]  tanh[(d + X + x,)/l/Zl] x = -d (1 la)  

X,, = (3&/4l2)sech4[(d - X - x2)/1/?1] tanh[(d - X - x2)/&1 x = d. ( I W  
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As in the previous case, (10) can be interpreted as the equation of an effective particle with 
unit mass, moving into the field of the effective potential: 

U ’ ( X )  = U o [ c o ~ [ ~ ~ / 2 K I J l + m l ( d  - X) + c o s [ n / Z K I ~ ] ( d  + X)]. (12) 

However, in contrast with (7). U’(X)  is somewhat an almost doubly periodic potential, but 
with the same amplitude as calculated in (8). The frequency of kink oscillations in this 
doubly periodic potential is derived from the relation 

S2: = A o n / K l G .  (13) 

Then, this frequency is greater than that found in the previous configuration. 
is the frequency with which the snoidal kink oscillates from one wall to the 

other of the domain boundaries. The continuity relation (1 l a )  provides us with the local 
potential that perturbs the kink motion about the incident wall, i.e. 

In fact, 

Ui(X) = (&/812)sech4[(d + X + x l ) / & ] .  ( 1 4 4  

On the other hand, let us consider a kink approaching towards the transmission wall, inside 
the finite domain. For this latter case the local impurity potential will be given by 

U,(X) = ( ~ / 8 1 ~ ) s e c h ~ [ ( d  - X - x z ) / h ] .  ( 14b) 

Since, in both cases, the kink centre of mass coordinate must obey the energy equation 
(Kivshar and Malomed 1989) 

x: = 2[E - U(X)] (15) 

where E is the total energy conserved about the impurity after the interaction with kink, 
then the considerations E > 0 and E < 0, respectively, allows us to distinguish between two 
different classes of behaviours for each of these configurations. 

(1) E =- 0. A kink in the field of the local impurity potential (14a) could not cross the 
incident wall as long as the incident velocity exceeds the threshold 

U, N - 2 f i  exp (5) [ 1 - n2d[Kl2d-] cosech 
1 

A kink inside the finite domain will permanently oscillate from the incident to the 
transmitting wall (i.e. the kink could remain trapped inside the scattering domain of length 
2d) until it acquires a velocity which is higher than the threshold: 

1 + n 2 d [ K 1 2 , / ~ ] c o s e c h  

(2 )  When E < 0, U, turns into the threshold velocity below which the soliton remains 
rapped into the potential well at the incident impurity site, while uz is the threshold velocity 
above which the soliton could overcome the trapping of the transmitting impurity site (where 
E is replaced by - E ) .  

Figures 2(a) and 2(b) are plots of V I  and u2 as functions of the domain thickness d ,  for 
a few values of m. Figure 2(a) shows that the reflection velocity U, increases as d increases, 
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Figure 2. ( U )  Increase in the threshold velocity at rhe incidenl impurity wdl, for increasing 
values of *e domain thickness d .  11 is seen that the exponentid growth of U, becomes mote 
marked as m is increased. (6) Decrease in the Lhreshold velocity at the transmitting impurity 
wall, for increasing values of the domain thickness d. In the present case. the exponential fall-off 
decreases as m is increased. 

2.5 

2 ---- 
'.. '-. 

1 5  
0 0.1 02 0.3 0.6 0.5 Figure 3. Variations in VI (curve n) and U? (curve b) 

as a function of the modulus m of the Jacobi elliptic 
m function. 

and this increase becomes more marked as m is increased. On the contrary, figure 2(b) 
shows that U* is lowered with increasing d and m. More suggestively, it is seen in figure 3 
that q ( a )  decreases whereas uz(b) increases with increase in m. 

Equations (16a) and (16b) also demonstrate that, at the asymptotic limit d -+ 0, the 
threshold values of the reflection and the transmission velocities coincide whereas, in the 
limit d + 03, u1 tends to infinity and u2 to zero. Thus, when the domain thickness 
becomes sufficiently large, the soliton will always be totally reflected by the incident 
impurity wall. Nonetheless, as pointed out in recent developments (Fei et a1 1991), the 
soliton may overcome this local effect of the incident impurity wall if its velocity is above 
some well defined resonance window. 

5. Conclusion 

We have investigated the scattering properties of solitary waves in a finite domain of an 
infinite c$4 chain. As a first step, we studied the case of a single point impurity inside the 
finite domain. Thus we found that the impurity traps the snoidal kink and promotes it  to an 
oscillating particle. The frequency of these oscillations has been calculated and is shown 
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to depend upon the impurity rate, the kink width and a characteristic parameter related to 
the finiteness of the scattering domain. 

As a second step, we treated the case where the two point impurities are sited at the two 
limiting walls. This configuration, described in terms of a two-point-impurities model, has 
led to behaviours which can be summarized as follows: a soliton inside the finite region 
(i.e. a snoidal kink) should oscillate from one impurity wall to the other at a frequency 
which is higher than that of the singlepoint-impurity configuration. However, provided 
that its velocity is at least equal to a threshold, the kink can be transmitted and thus escapes 
from the trapping caused by a doubly periodic potential. Otherivise, as long as the kink 
velocity about the incident impurity wall does not exceed a threshold, it will be permanently 
reflected and therefore could never get into the finite domain. 

We have estimated the threshold velocities for the kink reflection and transmission. 
We found that these threshold velocities are dominated by an exponential dependence with 
the domain thickness d, increasing and decreasing, respectively, as d is increased. We 
have also noted that these threshold velocities vary as a function of the modulus m of 
the Jacobi elliptic functions. More precisely, the increase in m enhances the threshold 
value of the reflection velocity but lowers that of the transmission velocity. Finally, i t  is 
pertinent to draw attention to the fact that, when the scattering domain becomes too large 
(i.e. d + co), the kink can always be totally reflected, since in that limit the threshold 
value of the reflection velocity tends to infinity. On the other hand, in the limit d + 0, 
both the reflection and the transmission velocities coincide, consistently with the physical 
expectations. Moreover, these latter behaviours are in accordance with the results (Kivshar 
and Malomed 1989) obtained for the scattering of large-amplitude kinks by inhomogeneities 
in  an infinite lattice. 

Appendix 1. The Jacobi elliptic snoidal function sn 

Let F ( p / a )  be a functional, given in terms of the integral: 

(A l . l )  

where 

X 
sin$?= - a > b. (A1.2) 

b 
m a  = - 

a b 

Setting m = b2/a2, then the functional (Al.1) will be defined using the substitution 

r = bsn(x/m).  (A1.3) 

sn is called the ‘lacobi elliptic snoidal function’, of argument x and modulus m (Abramowitz 
and Stegun 1968). 

Appendix 2. 
q = exp(-rK‘/K) and argument v = rx/ZK 

The Jacobi elliptic functions sn, cn and dn may, in some cases, be expanded i n  power series 
of a nome q and a renormalized variable U (U need not be small, as usually assumed in the 

Series expansions of Jacobi elliptic functions in terms of a name 
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perturbation theory). Thus we can write 

M 

4" cos[(~n)u] 
x 2x dn(x/m) = - + - - 

2 K  K n=1 l + q k  

(A2.1) 

(A2.2) 

(A2.3) 

Otherwise, the first derivative of the snoidal function sn is obtained as 

[sn(u)]' = cn(u) dn(u). (A2.4) 

Therefore, inserting (A2.2) and (A2.3) in (A2.4). one finds the formula of the series 
expansion of this last relation, and straightforwardly equations (7) and (IO) .  
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